
Scalable and Incremental Software Bug Detection

Scott McPeak
Coverity, Inc.

San Francisco, USA
smcpeak@coverity.com

Charles-Henri Gros
Coverity, Inc.

San Francisco, USA
chgros@coverity.com

Murali Krishna Ramanathan
∗

Indian Institute of Science
Bangalore, India

muralikrishna@csa.iisc.ernet.in

ABSTRACT

An important, but often neglected, goal of static analysis for
detecting bugs is the ability to show defects to the program-
mer quickly. Unfortunately, existing static analysis tools
scale very poorly, or are shallow and cannot find complex
interprocedural defects. Previous attempts at reducing the
analysis time by adding more resources (CPU, memory) or
by splitting the analysis into multiple sub-analyses based
on defect detection capabilities resulted in limited/negligi-
ble improvements.
We present a technique for parallel and incremental static

analysis using top-down, bottom-up and global specifica-
tion inference based around the concept of a work unit, a
self-contained atom of analysis input, that deterministically
maps to its output. A work unit contains both abstract and
concrete syntax to analyze, a supporting fragment of the
class hierarchy, summarized interprocedural behavior, and
defect reporting information, factored to ensure a high level
of reuse when analyzing successive versions incrementally.
Work units are created and consumed by an analysis mas-

ter process that coordinates the multiple analysis passes,
the flow of information among them, and incrementalizes
the computation. Meanwhile, multiple analysis worker pro-
cesses use abstract interpretation to compute work unit re-
sults. Process management and interprocess communication
is done by a general-purpose computation distributor layer.
We have implemented our approach and our experimental

results show that using eight processor cores, we can perform
complete analysis of code bases with millions of lines of code
in a few hours, and even faster after incremental changes to
that code. The analysis is thorough and accurate: it usually
reports about one crash-causing defect per thousand lines of
code, with a false positive rate of 10–20%.

∗The author performed the work as an employee of Coverity
Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging Aids; F.3.2 [Logics and Meaning of Programs]:
Semantics of Programming Languages—Program Analysis

General Terms

Reliability, Performance, Design

Keywords

Static Analysis, Bug Detection, Parallel, Incremental

1. INTRODUCTION
Static analysis for automated bug detection has been a

well studied problem [16, 17, 15, 40, 19] and its useful-
ness well documented in [7]. A variety of bugs are detected
by these techniques including null pointer dereferences, re-
source leaks, concurrency violations and buffer overflows.
Detecting these bugs before deployment is important be-
cause it is quite expensive to fix a bug found in the field.
There are also a number of dynamic analysis approaches for
detecting bugs [41, 35, 20, 33, 21]. However, many of the
dynamic analysis approaches are time consuming and are
critically dependent on the quality of the tests generated.
Motivated by the high cost of software bugs and the diffi-
culties of thorough testing, we seek to build a static analysis
that can accurately find bugs in large code bases and suc-
cessfully integrate with real-world development processes.

Intra-procedural analysis techniques for bug detection are
usually faster but cannot be used for detecting complex
inter-procedural defects because of high false positive rate.
On the other hand, accurately finding a compelling frac-
tion of bugs requires interprocedural analysis: in particular,
bottom-up [30, 2] propagation of behavior summaries, top-
down computation [3] of calling context, and global speci-
fication inference [39, 26, 36]. Most industrial code bases
are large, typically between one and ten million lines of
non-blank, non-comment code (LOC). However, applying
inter-procedural analysis on large codebases takes too long
(sometimes running into weeks) [7].

Integrating static analysis with the development process
requires at least two important properties. The first is it
must be fast. The reason is that in order to be adopted into
regular usage, static analysis must fit into one of the devel-
opment cycles [4], and a natural fit is the nightly build cycle.
A typical nightly build and test cycle takes 5–10 hours, so
static analysis must complete within that time window; oth-
erwise, organizations would have to create a new cycle just

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2501854

554

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

for static analysis, and experience has shown that most are
unlikely to do so.
Moreover, static analysis results quickly become stale. Sta-

tic analysis identifies root causes, not bug symptoms, which
is a big advantage—if results are delivered quickly. If not,
developers are often reluctant to make changes to code that
has “cooled” on the basis of defect reports sometimes per-
ceived merely as theoretical [28]. New code usually goes
through automated tests and/or a quality assurance cycle
fairly soon after being checked in. Additionally, in many
organizations, a significant component of the testing effort
for a given piece of code happens implicitly as the prod-
uct is exercised for other reasons. The longer a piece of
code has been deployed, either internally or externally, the
greater the sunk testing cost. That cost must be incurred
again when the code is changed for any reason, even to ad-
dress a static analysis defect. Delays also increase the cost
of the developer learning or re-learning the relevant code.
Therefore, timely delivery of defect reports is an important
requirement for those reports to be useful.
The second important property is that defect results must

be deterministic because this is critical to verifying a fix.
Non-determinism means defects might disappear for rea-
sons other than being fixed, even if the code is unmodified.
Therefore, the results of analyzing a particular code base
do not depend on how the analysis was run, for example,
how many concurrent tasks were involved or how much in-
crementality was involved. We argue that determinism is
necessary to build confidence in the tool: if users (devel-
opers) see results “flicker”, they have a hard time learning
what to expect from it, and may assume it is generally un-
reliable. Moreover, unpredictability makes it very difficult
to put processes in place to manage the set of defects: both
when dealing with the backlog when static analysis is first
deployed, and handling the stream of new defects as devel-
opment proceeds, it is critical that defects only disappear
when they are truly fixed, and that they only appear when
truly introduced. Otherwise it is impossible to answer the
questions of how much work has been done and how much
remains, which are central to the management task.
Additionally, the code being analyzed is mostly the same

between any two consequent versions of a code base. So, it
is natural to do incremental analysis by reusing results effec-
tively. Small differences in the codebase should not trigger
a full analysis and only relevant parts of the code need to
be reanalyzed. More pointedly, for example, the addition
of whitespace at the beginning of a file should not cause all
of the functions and their interprocedural dependencies to
be re-analyzed. Furthermore, the results of an incremental
analysis must also be equivalent to the results from a full
analysis – otherwise, user confidence quickly erodes.
We address the above discussed three objectives in this

paper. We provide a design of a parallel analysis technique
for interprocedural static analysis. We define a work unit as
a serializable collection of self-contained analysis input data
that can be analyzed independently (and quickly). The spe-
cific type of output from a work unit differs for each type
of work unit, but is typically a set of defects or a function
summary. The only inputs to the analysis of a work unit are
the work unit itself and the analysis binary; i.e., the output
is deterministic in those inputs, with the exception of pos-
sible diagnostic timing information included in the output.
Furthermore, the output is platform-independent, in that

analyzing the work unit on all platforms yields the same
output (the analysis times can be different). The overall
analysis is split between a single master process and a set
of worker processes, with workers potentially on machines
other than where the master is running. The master divides
the analysis task up into work units that are sent to the
workers, which then return results when each work unit is
complete, for subsequent integration by the master. When
the computation is finished, the master presents the finished
results to the originating client and terminates the workers.

The design of a work unit has inherent challenges. As
it is desirable for work units to be self-contained, there is
design pressure to keep their size small, and avoid reliance
on shared state, which adds complexity and compromises
independence. Identifying the appropriate scope of a work
unit so that the overhead of communicating and processing
the work units (and results) back and forth between pro-
cesses does not exceed the benefits accrued of distributing
the work across multiple processes is important. Further-
more, the analysis of the work units must be deterministic
under different resource conditions, or on different platforms.

Addressing these challenges yields a number of important
benefits. The determinism of the work unit results enables
the use of incremental static analysis. Our design of the
work unit ensures that only a practically feasible minimum
fraction of the entire code base is analyzed. Obviously, re-
ducing the amount of code to be analyzed lessens the overall
time taken for the analysis. The design of the work unit also
yields a powerful advantage of failure isolation – when the
analysis crashes or otherwise misbehaves, all that is required
to reproduce the problem is the work unit and the appro-
priate analysis binary.

We have implemented our design in the Coverity Static
Analysis [7] to analyze large codebases. The tool takes as
input abstract syntax trees and performs a combination of
bottom-up and top-down processing to detect various types
of defects including null pointer dereferences, concurrency
violations, resource leaks and buffer overflows. Applying
our analysis on a number of large open source benchmarks
(1-7 MLOC) shows a substantial reduction in the analysis
time. Our results show that the analysis time is reduced by
upto a factor of five to seven on an eight core machine on
many C benchmarks, while still being able to detect critical
defects with high precision (less than 20% false positives).

We make the following key technical contributions in this
paper:

1. A design of a self contained analysis work unit that
can be analyzed independently, quickly and determin-
istically.

2. A design and implementation for a scalable static anal-
ysis by leveraging the design of work units to find crit-
ical defects precisely.

3. An empirical evaluation of the proposed approach dis-
playing its scalability on very large codebases with mil-
lions of lines of code.

The rest of the paper is organized as follows. We discuss
the design challenges for building a scalable static analysis
tool for bug detection and present the design and imple-
mentation of our approach in Section 2. In Section 3, we
presents the results of our analysis on large codebases. The
challenges posed in scaling the analysis for object-oriented

555

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

programs is discussed in Section 4. We compare our work
with other approaches is Section 5 and conclude in Section 6.

2. DESIGN

2.1 Architecture
The overall architecture which includes the proposed de-

sign is given in Figure 1.

Analysis Framework
Interprocedural

In
cr

em
en

ta
l

A
n

al
y

si
s

Program

ASTs

Defects

Worker1

Worker2
Work Units

Results

........

Units

Results

True Positives False Positives

Work

Analysis Options

User Interface

Parser

Figure 1: System Architecture.

First, we provide an overview of the interprocedural anal-
ysis computation to perform, independent of how it is spread
across time and space. We informally use chronological
metaphors, but that is just to convey data dependence.
To begin with, the program source code is parsed into an

Abstract Syntax Tree (AST) forest, one tree per function. In
this paper, we use the term“function”for functions, methods
and initializer blocks.
Once the analysis phase begins, a “virtual linker” pass

resolves named symbol references across translation units;
heuristics are used to deal with dynamic linking. Then,
indirect calls through function pointers and virtual func-
tion calls are approximately resolved using a whole program
pointer analysis; this approximation is used to determine
the interprocedural dependencies and hence available paral-
lelism, and it is refined during the analysis proper by using
the more precise information available at each individual call
site. Finally, an acyclic call graph is constructed (treatment
of recursion is omitted here).
With initialization complete, the analysis proper can be-

gin. The core of the analysis is organized into“checkers”and
“derivers”. Checkers are responsible for reporting defects,
while derivers are responsible for computing summaries for
use interprocedurally. Each operates on a single function at
a time, primarily using abstract interpretation [11].
The analysis as a whole is organized into five passes over

the entire code base. First, in the statistical pass, derivers
use intraprocedural analysis to summarize usage patterns for
functions, which are then aggregated during the barrier to
infer specifications [18] which augment the built-in rules. Be-
cause the statistical pass runs first and hence does not have
access to interprocedural information, the inferred specifica-

Statistical

specification

inference

Bottom−up

concurrency

derivers

Barrier

Barrier

Top−down

concurrency

derivers

Barrier

Bottom−up

sequential

derivers

Concurrency

checkers

& sequential

Defect

reports

Function

ASTs

callee

caller

caller

callee caller

caller

callee

Figure 2: Interprocedural analysis computation de-
pendencies.

tions are also (like indirect call resolution) somewhat impre-
cise initially, and must be combined with context-dependent
information when used by later analysis passes.

Next, a bottom-up pass computes concurrency behavior
summaries, including which mutexes are acquired, released
or both. The derivers analyze each function, callees be-
fore caller, hence “bottom-up”. Then, using results from
the previous phase, a top-down pass summarizes additional
concurrency behaviors, for example the detection of which
mutexes are held on entry. Next we run another bottom-up
pass, which summarizes sequential properties such as pointer
dereferences and resource acquisition. Finally, the checkers
run, and they report actual defects, both sequential and con-
current. After each deriver pass is a barrier: all functions in
that pass must be analyzed before any function in the next
is analyzed.

The current design places all the checkers to be run after
the final barrier. However, sequential checkers need not be
constrained by this barrier and could potentially be run in
parallel after the statistical barrier. Relaxing this constraint
will only expose more parallelism and reduce analysis time
even further.

Figure 2 summarizes this structure. Each rectangle rep-
resents the set of computation nodes in a pass, one for every
function in the call graph. Edges annotated with“caller”and
“callee” on their endpoints connect nodes that have that re-
lation in the call graph. Since there are five rectangles, if
the program has m functions, then this computation depen-
dency graph has 5m nodes, not counting the barriers.

As a brief illustration of the interaction in the sequential
bottom-up phase, consider the program in Figure 3. When
g is analyzed by the NULL pointer deriver, the result is a
summary that says it unconditionally dereferences its first
argument. When f is analyzed by the NULL pointer checker,
it deduces that there is a path along which p is NULL when
g is called. The checker consults the summary of g, sees that
the pointer will be dereferenced, and reports a defect.

556

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

gf

Top−down

concurrency:
f g

Bottom−up

derivers:

f g

f g

Barrier

Barrier

Barrier

int f(int *p)

{

 if (p != NULL) {

 ...

 }

 return g(p);

}

int g(int *q)

{

 return *q;

}

f g

Checkers:

Stats:

Bottom−up

concurrency:

Figure 3: Example program with interprocedural
defect (left), and its computation dependency graph
(right).

int f(int *p) int g(int *q)

{ {

if (p != NULL) { h(*q);

return *q;

... }

}

return g(p); void h(int q)

} {

print(q);

}

Figure 4: Incremental changes: Addition of method
h.

The analysis is applicable for finding defects of various
types and employs a number of derivers including NULL
pointer deriver, resource deriver, lock deriver, etc. The de-
tails of what each checker and deriver do are beyond the
scope of this paper. See [18, 16, 7] for discussion of some of
them.
For any changes to the source, the interprocedural analysis

need not run on the entire source. It suffices to analyze code
that is affected by the modifications pertaining to the prop-
erty. The design of the static analysis system into checkers
and derivers for different properties is leveraged to reana-
lyze only the absolutely necessary parts of the program. We
elaborate this further using an example.
In Figure 4, a method h is added and called from method

g. A naive approach would be to reanalyze all the methods
f,g and h. The design of our analysis ensures that not all
methods need to be analyzed. Even though a potential null
pointer dereference happens in the call to h, this does not
change the overall function summary of g. In other words,
the analysis of the changed program will only involve analy-
sis of methods g and h. If there were other methods that are

called from f (not shown in the Figure), then those methods
need not be re-analyzed.

However, although f is not re-analyzed, the defect that
will be reported to the user is different. That is because
the defect contains interprocedural evidence; in particular,
it cites the location and syntax of the dereference in g, which
are different. This is made possible by deliberately omitting
some defect reporting information from work units: instead,
the work unit contains an abstract identifier for each piece of
interprocedural evidence, and the work unit result refers to
that identifier. When the analysis master receives the work
unit result, it uses those identifiers to assemble the complete
defect report for presentation to the user.

Most details of how the analysis of a single work unit op-
erates are out of the scope of this paper, but the core is
a general purpose abstract interpretation engine. For in-
stance, loops are handled with widening and iteration to a
fixpoint. Checkers vary in their choice of abstract domain,
abstract operations and heuristic adjustments to the core
engine behaivor. As static analysis techniques go, abstract
interpretation is relatively expensive, but also can be very
precise, which is important for user adoption. For the pur-
pose of this paper, the key point is that analysis of a single
function takes significant computational resources, and re-
quires information from its dependencies according to the
dependency graph.

2.2 Parallel Analysis

2.2.1 Work Unit

In typical programs, the structure in Figure 2 has a great
deal of parallelism, and we exploit that directly.

Since at least 90% of a sequential analysis time is spent
in abstract interpretation, which has a high ratio of com-
putation to input and output, it forms a natural basis for
task decomposition: we create one work unit for the abstract
interpretation of each function. A work unit is an explicit
realization of an atom of schedulable analysis work, with de-
pendencies carefully crafted to both expose parallelism and
minimize sensitivity to irrelevant changes. The result of an-
alyzing a work unit is a combination of defect reports and
behavior summaries.

A work unit contains the following elements:

• The AST of the function to analyze.

• Definitions of the types that the AST refers to.

• The source code of the function (but not the whole
file).

• The callee behavior summaries and calling context sum-
maries.

• Inferred specifications for interfaces used in the func-
tion.

• Analysis options.

This design of the work unit specifically ensures that each
function is analyzed separately with only the information
from the work unit. In practice this means the analysis only
uses enough memory to load a single function, its models
and some associated overhead. This relatively flat memory
consumption enables us to use multiple cores in a predictable

557

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

and scalable fashion while using predictable amounts of mem-
ory. Knowing the approximate amount of memory ahead of
time is critical. In contrast, whole program analysis can
rarely estimate the required memory resulting in occasional
failures.

2.2.2 Distributor

Work units are processed by analysis workers, which for
software engineering and portability reasons are separate op-
erating system processes. A single master process produces
work units and consumes their results. Communication is
done through a message-passing interface that can use var-
ious interprocess communication (IPC) primitives, such as
sockets and explicitly shared memory. This design is based
in part on Condor MW [22] and is depicted in Figure 5.

Master (AM)
Analysis Analysis

Workers (AW)

Master (DM)
Distributor

Q1

Q2

Q3

Distributor
Workers (DW)

WUR

WU

WU WURWUR WU

n {

n {

Figure 5: Process and communication architecture.

The user invokes the Analysis Master (AM). This pro-
cess is responsible for reading from the program database,
constructing work units (WU), consuming work unit results
(WUR) and storing the results (defects and summaries) in
the results database.
The AM spawns the Distributor Master (DM), a process

primarily responsible for communication coordination and
queueing. The DM in turn spawns n Distributor Worker
(DW) processes, where n is chosen based on available hard-
ware resources and influenced by user perferences. The DW
is responsible for starting the Analysis Worker (AW), the
process that computes the result of each work unit. The
DW also monitors the AW, restarting the AW if it fails ir-
recoverably.
There are three types of communication queues: Q1 con-

tains work units waiting for an available worker, Q2 contains
work unit results ready for the AM to consume, and each
DW contains an instance of Q3, a two-element queue in-
tended to ensure that a worker does not become idle due
to communication latency (which is mainly an issue when a
worker is running on a different machine than the master).
The AM tracks the number of outstanding work units and
voluntarily pauses creating and enqueueing them once a few
hundred are outstanding in order to conserve memory and
give the workers a chance to catch up.
The DM and DW are collectively known as the Distributor

Layer. This layer relieves the analysis processes of most
fault tolerance concerns and simplifies their communication
duties so that each analysis process only has to monitor one

bidirectional IPC channel. The DW is a separate process
so it survives if the AW crashes (in this context, a “crash”
is usually an unrecoverable assertion failure). The DM is
a separate process so that it has its own thread of control
and therefore can service the IPC channels at the same time
as the AM produces and consumes work units. The entire
layer is independent of the global task to be performed; for
example, internally, we use it to run our automated tests in
parallel with each other.

The distributor layer takes care of measuring and aggre-
gating various performance statistics such as worker idle
time, memory usage and communication delays to enable
later investigation into computation efficiently. The user
can request more detailed logging, including logging every
byte of every message. These diagnostic capabilities are in-
valuable when supporting a complex parallel computation
running at remote sites to which one has limited access.

2.2.3 Scheduling

Generating an optimal schedule to parallelize the com-
putations in a dependency graph is a variant of precedent-
constraint scheduling and is NP-complete [27]. Therefore,
we employ a greedy critical path scheduler. A critical path
is a longest remaining path from a node to the next barrier.
The critical path cost of a node is computed as the node’s
weight plus the maximum of the critical path costs of its
successors. We then prioritize tasks based on the critical
path cost.

In Section 2.1, we partitioned the analysis activities into
derivers and checkers to maximize available parallelism. Wh-
ereas nothing in the analysis consumes the output of a checker,
both derivers and checkers consume the output of derivers.
That means that the derivers are on the critical path, but
checkers are not. Therefore, to avoid resources from being
idle, we must focus attention on that critical path. We delay
running checker work units until we run out of parallelism
in the deriver computation, since checker work units can be
scheduled at any time once their callees have been analyzed
by derivers.

Figure 6 illustrates the parallelism benefits of running de-
rivers first. In schedule A, each work unit runs both check-
ers and derivers. Early on the analysis does reasonably well
at utilizing workers because there is enough parallelism in
the bottom half of the callgraph. But as we get nearer the
top, callgraph parallelism drops off as the analysis becomes
more serialized, and worker utilization drops. In schedule
B, we have the exact same shape of available parallelism,
but it only applies to the derivers. Since the derivers are
run as soon as their inputs are available, taking precedence
over checkers, they follow the same profile but it is scaled
down horizontally because the derivers take less time to run.
Where there is no deriver work to be done, checkers fill the
gap. At the very beginning, the checkers for some leaf func-
tions run in parallel with the derivers for the leaves, sat-
urating the workers. The saturation stays just before the
end when it drops off non-instantaneously simply because
in the last batch of functions some will finish before others.
Not only does the end-to-end computation finish faster in
schedule B, but it has unexploited parallelism, and so could
finish even faster if more workers were provided. In contrast,
schedule A was only briefly able to exploit all of its available
workers.

558

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

time

max workers

workers doing work

time

workers doing work

max workers

derivers + checkers

same area
under these curves

(about 25% of total)
derivers

checkers

Schedule A

Schedule B

Figure 6: Derivers and checkers have the same pri-
ority in Schedule A. Derivers have higher priority
over checkers in Schedule B.

Originally, we also surmised that it would be important
to accurately estimate the time to analyze each node and
weight the path cost accordingly. In particular, we tried
using combinations of AST size and cyclomatic complexity
to estimate analysis cost. However, experimentation showed
that simply using unit cost per node performed about the
same as any weighted cost, so we currently use simple path
length as the cost of a path.
The critical path length of each node is also supplied to the

distributor master when a work unit is enqueued, and Q1 is
maintained as a priority queue. When Q1 is not empty, and
some worker has fewer than two outstanding work units, the
next highest-priority element of Q1 is sent to that worker.
This way, a node with a high critical path cost but whose
predecessor results were delayed for some reason can “jump
ahead” of lower-cost nodes already in Q1.

2.3 Incremental Analysis
In the incremental analysis use case, an initial analysis is

run, then the code to be analyzed modified and rebuilt, then
a second analysis is run. The goal is to produce the same
results on the second run as would be produced by a run
from scratch, as quickly as possible.
The work unit design naturally supports incremental anal-

ysis: the map from work unit to work unit result is deter-
ministic, so we simply maintain a cache across analysis runs.
When a work unit is already in the cache, its result is avail-
able immediately, so the abstract interpretation is skipped;
otherwise it is computed normally. The cache treats work
units as opaque blobs when checking for equality.

Consequently, making this cache effective across code cha-
nges requires considerable care in work unit design, since
otherwise it could be that a small change somewhere would
cause slight differences in a large number of work units, and
hence those units would have to be recomputed. To illus-
trate the problem, let us consider what happens if line num-
bers are included in work units. Line numbers are needed
eventually in order to report meaningful defects, and defects
are constructed from work units, so a naive implementation
would include them. But then if the user adds (say) a blank
line to the top of the file that contains the definition of a
custom allocator, the summary of that allocator will have a
different line number in its reporting structures. That will
propagate to all functions that allocate memory, which is
usually a large fraction of all of them. Consequently, incre-
mental analysis would re-analyze that fraction of the pro-
gram, all because of one blank line.

To solve this, defect reporting information is factored out
of the packaged work unit and held on the master side while
the work unit is processed: each source location is an offset
relative to some stable anchor point, like a function defini-
tion or class member declaration. When the result comes
back, the master computes the actual file names and line
numbers based on the locations of the anchor points.

Similarly, when a defect or function summary makes use
of interprocedural information to draw a conclusion, such
as a lock being held or a function requiring that its return
value be checked, it cites abstract evidence identifiers in the
work unit result. When these conclusions are included in
subsequent work units, they too are made abstract, car-
rying behavior semantics but little or no defect reporting
information. Only the analysis master process, which has
relatively little computation to perform, is exposed to the
defect reporting details that are sensitive to“small”program
changes; and the master process takes care of managing the
abstract identifiers and correlating them across work units
to assemble complete defect reports.

3. EXPERIMENTS
We implemented this design in the Coverity Static Anal-

ysis [7], a mature commercial static analysis tool. We did
not change its output: its accuracy and thoroughness were
unaffected by the use of the parallel and incremental design
presented here. With the new design it merely runs faster,
while (as before) it usually reports about one crash-causing
defect per thousand lines of code, with a false positive rate
of 10–20%.

Table 1 shows a selection of open source code bases with
their sizes, analysis times with one worker process and eight
worker processes, speedup factor and defect counts. All code
bases were analyzed with default analysis options on an 8
core machine running Linux 2.6.18-128.el5 with two Xeon
E5530 (4 core) 2.40GHz processors, 16GB RAM and a SAS
146GB 15k RPM disk. We ran the analysis with a subset of
the total number of checkers (the set that is turned on by a
default analysis run) and varied the number of workers that
is available for each analysis run.

The size of the codebases varies from 1.13K to 6.7 mil-
lion lines of code. The number of functions ranged from
13K to 510K and the analysis times with one worker var-
ied from approximately 20 minutes for postgresql to half
a day for analyzing openoffice. The analysis detected a
large number of defects – 1190 for postgresql to 69206 for

559

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Table 1: Benchmark Information.

code base version Language LOC Number of Analysis time (in secs) Speedup with Defect
(in millions) functions one worker eight workers eight workers count

postgresql 9.2.1 C 1.13 13550 1189 170 6.99 1190
wine 0.9.55 C 1.72 49359 3746 557 6.72 1471
xc 6.6 C 2.11 46953 6048 837 7.22 4228
linux 3.6.3 C 5.20 178344 8217 1675 4.90 4251
openoffice 2.4 C++ 6.77 510064 44209 14981 2.95 69206

openoffice. Most reported defects from this analysis cause
program crashes, hangs, data corruption or runtime excep-
tions. Furthermore, the reported defects were exactly the
same across multiple runs of the analysis with different par-
allelization factors.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

s
p
e
e
d
 u

p

number of workers

Speed up vs Number of workers

postgresql
wine

xc
linux

openoffice

Figure 7: Analysis time with increase in number of
workers.

Instead of relying on our own judgement to validate the
precision of the defects found by our analysis, we used the
evaluation of independent programmers familiar with the
codebases to comment on the correctness of a defect. The
website scan.coverity.com allows developers of open-source
projects to review the analysis results for free and to rate
the individual defects according to accuracy. For example,
on an older version of linux 1, 5446 defects were inspected
by the programmers out of which 300 were labelled as false
positives and 323 as intentional defects. False positives are
imprecise defects shown due to the imprecision of the anal-
ysis. While intentional defects are precise defects shown by
the analysis, they are not necessarily fixed by the program-
mer because the incorrectness in the code was with a spe-
cific purpose (e.g., a crashing test). Since neither of these
types of defects will result in a code change, we consider
both cases as false positives. This results in a false positive
rate of 11.4% for this code base, which is in line with the
overall false positive rate of 9.7% for all of the Scan code
bases [37]. We expect the accuracy of the defects found on
the code bases used for the experiments in this paper to also
lie within this range.

1All checkers except variants of coding style violations were
enabled while analyzing linux.

The speedup achieved with parallel analysis is shown in
Figure 7. In this figure, each analysis time is plotted with
respect to the single worker analysis; that is, we plot the
ratio of the single worker analysis time to the analysis time
for the plotted configuration. For all C benchmarks, we ob-
serve a speedup of five to seven times over an analysis with
just one worker. The speedup is also a function of the paral-
lelism available in the call graph as observed by the differing
improvements between wine and xc even though they have
approximately the same number of functions. As the num-
ber of workers increase, on a larger benchmark like linux,
the analysis stops getting faster once 6–8 workers are run-
ning due to bottlenecks in the master. On the other hand,
openoffice with virtual call resolution enabled stops getting
faster due to lack of available parallelism. Even though, the
actual improvement in time of the analysis is significant, we
still consider this as a limitation of our approach in scaling
for C++ codebases with virtual call resolution and discuss
this in further detail in Section 4.

The analysis has been deployed and applied on very large
code bases. Practical experience shows that the analysis
scales well with increase in the number of workers. When the
analysis was applied on a ∼22MLOC (mostly C) industrial
codebase with ∼27K files containing ∼204K functions, the
analysis analyzed ∼171M paths to detect ∼32K defects. On
a 24 core machine and 96GB RAM, the sequential analysis
takes more than 200 hours. However, when parallel analysis
was invoked with eight workers, the analysis time reduced to
approximately 31 hours. As the number of workers increased
to 16, the analysis time reduced to approximately 18 hours
(at least 12 times speedup over the sequential analysis).

 0

 1

 2

 3

 4

 5

 6

 7

postgresql wine xc linux ooo

sp
ee

d
u

p

Benchmarks

Figure 8: Comparison of the proposed design with
older parallel-by-checker (PBC) implementation.

We also compared the design presented here with the older
“parallel-by-checker” (PBC) feature of the product. The
PBC implementation partitions the checkers, then invokes
multiple sequential processes, each analyzing with one par-

560

tition of checkers. We analyzed all the benchmarks from
Table 1 with the parallelization factor set to four (as the ex-
isting PBC implementation did not scale further). Figure 8
presents the ratio of analysis time with the PBC implemen-
tation to the time take for analysis using the approach pre-
sented in this paper using four workers in both cases. We
observe a better scaling with the proposed approach and at-
tribute the slowness in PBC to duplicate operations and the
lack of scheduling of the analysis computations.
Table 2 shows statistics about work unit construction and

processing time, and the sizes of work units and their results.
Processing work units takes 2–3 orders of magnitude longer
than construction (consumption of results is even faster),
which helps maintain parallelism. Work units and results
are small, usually under 10 kB, minimizing communication
costs. Both times and sizes have a heavy tail, as mean and
standard deviation are larger than median and interquartile
range for all four measures.
Figure 9 shows a representative case of incremental anal-

ysis of a large code base. A historical version of the code,
as recorded in the source control system, was selected at
random. That version was built and analyzed sequentially,
non-incrementally. Then, we incrementally built and ana-
lyzed the chronologically next 20 checked in versions. Over
these 20 changes, an average of 4, median of 3 and max-
imum of 22 analyzed source code files were modified, and
an average of 132, median of 20 and maximum of 1508 ana-
lyzed source code lines were added or modified. The changes
were made by 12 different authors, checked in over a span
of 3 business days of development work and address a wide
range of feature and bug fix work. For comparison, we also
show the time to do a non-incremental analysis of each ver-
sion. The incremental analyses took on average just 15% of
the time of a full analysis 2, demonstrating the effectiveness
of the incremental analysis and work units’ insensitivity to
irrelevant changes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20

a
n
a
ly

s
is

 t
im

e
 i
n
 s

e
c
o
n
d
s

versions of the codebase

Comparison of incremental analysis vs full analysis

full analysis
incremental analysis

Figure 9: Performance of incremental analysis
across 20 successive versions of a large codebase.

4. DISCUSSION
As the experimental results show, analysis of C++ code

with virtual call resolution enabled shows reduced speedup

2The output of incremental and full analysis are identical.

in comparison to C code bases. One reason is that virtual
function call resolution adds enough additional edges to the
call graph. This creates more dependencies among the dif-
ferent nodes in the call graph and the available parallelism
drops noticeably. Historically, we have focused on precise
virtual call resolution only to reduce false positives. In par-
ticular, we could afford to wait to eliminate some of the res-
olutions until the abstract interpretation phase, when more
information generally is available. But with parallel analy-
sis, call resolution affects speed as well as precision, and to
that end we are working on ways to do more of it in advance
of call graph construction.

In addition to lack of available call graph parallelism,
speedup is also limited by bottlenecks in the analysis mas-
ter. This is particularly true for C++ code bases, which have
more complex type hierarchies, which causes the master to
spend more time loading types during work unit construc-
tion.

These effects can be seen in Figure 10, which shows a
breakdown of the time spent in the analysis master during
analysis of openoffice.org-2.4 with 8 workers. Sequential ini-
tialization includes the portion of virtual call resolution that
is done before abstract interpretation. The master spends
16% of its time waiting for workers because of limited par-
allelism due to call graph density. 54% of time is spent
constructing work units; the bulk of that is loading and pro-
cessing interprocedural summaries, but a significant piece is
loading class hierarchy fragments.

Task Time fraction

------------------------------ -------------

Sequential initialization 7%

Wait for workers 16%

Construct WU 54%

Load function AST 1%

Load types 13%

Load summaries 32%

Serialize WU 2%

Other 6%

Consume WUR 22%

Store stats 2%

Store behavior summaries 5%

Insert into WUR cache 5%

Other 10%

Other 1%

Figure 10: Analysis master time breakdown for
openoffice.org-2.4 with 8 workers. Indented lines are
sub-tasks. All percentages are of the total time.

To improve speedup on C++ code, we are working on
ways of further optimizing the analysis master and more
precise virtual call resolution.

5. RELATEDWORK
There are a number of static analysis techniques pro-

posed for bug detection. Dillig et al. [15] propose a precise
technique for a path-sensitive and context-sensitive program
analysis. Das et al [12] present an approach for partial pro-
gram verification in polynomial time. Engler et al. [16] pro-
pose an approach for writing system-specific compiler exten-
sions that automatically checks the code for rule violations.

561

Sunshine
高亮

Table 2: Work unit(WU) statistics analyzing linux-3.6.3.

Min Mean Median Max Standard Interquantile
Deviation Range

WU construction time on master (ms) 0 4 3 723 6 4
WU processing time on worker (ms) 1 5,018 140 104,471 13,261 2,534
WU size (bytes) 200 6,159 4,233 314,898 7,705 4,816
WU result size (bytes) 10 748 660 12,737 509 537

This is in contrast to writing abstract specifications that are
then verified by model checkers [24] or theorem provers [13].
In a follow up work, they also present their evidence of using
the static analysis machinery on billions of lines of code [7]
pointing out to the importance of reducing false positives
and analysis times for static analysis tools to be adopted.
There are also other approaches that infer common behavior
of a program [18] and identify the deviants as bugs. Ganapa-
thy et al. [19] provide a static analysis solution for detecting
buffer overflows in C code by modeling string manipulations
as a linear program. Our approach presented here is com-
plementary to all these approaches. A primary goal for our
work is to make interprocedural static analysis faster and
on designing a system to apply the analysis continuously as
part of the nightly build cycle on any codebase.
Recently, there has been some very interesting work on

improving the scalability of program analysis [3, 29, 34].
Albarghouthi et al. [3] present an approach for parallelizing
a top-down analysis and apply their approach on device de-
rivers (approximately 25K LOC) to verify safety properties.
Our approach combines top-down, bottom-up and global in-
ference passes, and we focus on code bases that are several
orders of magnitude larger. Lopes and Rybalchenko [29]
present a distributed approach for predicate abstraction and
refinement-based algorithm that is also deterministic. While
we share common goals in terms of speed and determinism,
the intended applications and the magnitude of its applica-
tion vary. Prabhu et al [34] address the issue of slowness of
higher-order control flow analysis and propose an algorithm
for its acceleration with a GPU. Mendez-Lojo et al [31] pro-
pose a parallel analysis algorithm for inclusion-based pointer
analysis and show a speed up of upto 3x on a 8 core machine
on code bases with size varying from 53KLOC to 0.5MLOC.
In comparison, we show better speedups on much larger
codebases, albeit for the purpose of bug detection.
Counterexample-guided abstraction refinement [6, 8, 5]

techniques use progressively better models of the program
that is being analyzed to detect errors accurately. While
these techniques may find potentially more accurate and
even find deeper defects in a few cases, they are not nec-
essarily scalable and very hard to determine in advance if
they will work well for a given program. Moreover, the ap-
proaches are optimized to suit a specific codebase to verify
a specific program property. So, a minor change to the pro-
gram can potentially increase the analysis time making it
hard to incorporate such approaches into a development flow
like a nightly build. Furthermore, from our practical experi-
ence analyzing industrial codebases, the usual constraints of
using static analysis are to find defects that have the highest
impact on quality to fix within limited time and resources
rather than to detect a specific defect type in a expensive
manner. The advent of parallel and incremental analysis

with the nightly build model satisfies these constraints for
a wide spectrum of codebases. So, while some of these ap-
proaches have been shown to be able to scale to analyze spe-
cific programs, our approach routinely analyzes programs up
to 20+MLOC that it has never seen before without scala-
bility issues.

Parfait [10] is another static bug detection framework where
simple analysis techniques are employed to detect easily de-
tectable bugs and expensive approaches used, if necessary for
other defects. They apply their analysis on a subset of the
SAMATE benchmarks [38] pertaining to two defect types –
buffer overflow and read outside the bounds of an array. The
average time taken for analyzing each benchmark is 0.2068
seconds [10]. In contrast, we have applied our implemen-
tation on large (industrial and open source) codebases and
detect different types of defects scalably.

PREfix is a static analysis tool that attempts to find com-
plex interprocedural defects and PREfast is its faster vari-
ant where precision is traded for scalability [32]. Therefore,
while the latter can potentially show defects quickly, fur-
ther annotations are essential to do a deeper analysis. The
strength of our approach is that it is not only scalable but is
also automatic in finding a large number of real, reasonably
deep defects with a low false positive rate.

MapReduce [14] is applicable to massively scaling rela-
tively simple computations that have a high degree of paral-
lelism. This analysis is different because there are intricate
dependencies dictated by the structure of the callgraph and
the different phases of analysis. The amount of parallelism
available doesn’t justify using a cluster, as commodity mul-
ticore hardware has enough power (and memory) to take
advantage of the available parallelism.

Burckhardt et al [9] present an algorithm that can leverage
a small set of primitives to exploit parallelism and can be
used for incremental purposes as well. While their approach
is a general paradigm for applications, in this paper we have
presented an approach that is used for parallel and incremen-
tal static analysis for bug detection and empirically show the
performance improvement across multiple codebases.

Impact analysis [1, 25] is the problem of identifying the
impact of a change on the program. It is essentially used to
identify regression tests that need to be run so as to minimize
the amount of time required for testing. Incremental anal-
ysis shares common goals with impact analysis, albeit for
identifying relevant code that needs to be reanalyzed rather
than for testing. Guarnieri and Livshitz [23] address the
problem of analyzing just the client code in the absence of
the entire program source and apply it for JavaScript clients.
While the constraints are different for both the problems,
our approach can be leveraged so as to just store work units
and analysis results of the server code and subsequently just
analyze the clients.

562

6. CONCLUSION
This paper presents a design for parallel, incremental and

deterministic interprocedural static analysis that addresses
three practical concerns: (a) faster analysis to detect com-
plex defects precisely, (b) detect defects deterministically
and (c) analyze incremental changes to code efficiently.
The keys to the design are a carefully constructed work

unit structure and a robust message-based concurrent task
infrastructure. The resulting analysis finds about one criti-
cal bugs per thousand LOC in C code, with less than 20%
false positives. Our experiments demonstrate scalability and
determinism of our approach across a wide spectrum of code-
bases. It runs in a few hours on code bases with millions of
LOC on modern commodity hardware and always produces
the same results for the same input.
Consequently, this analysis can be deployed as part of a

typical nightly build cycle, ensuring that defects detectable
with static analysis are consistently found and fixed before
they can cause harm.

7. REFERENCES

[1] M. Acharya and B. Robinson. Practical change impact
analysis based on static program slicing for industrial
software systems. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
746–755, New York, NY, USA, 2011. ACM.

[2] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and
P. Hawkins. An overview of the saturn project. In
Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE ’07, pages 43–48, New York, NY,
USA, 2007.

[3] A. Albarghouthi, R. Kumar, A. Nori, and S. Rajamani.
Parallelizing top-down interprocedural analyses. In
Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation, pages
217–228. ACM, 2012.

[4] N. Ayewah and W. Pugh. The google findbugs fixit. In
Proceedings of the 19th international symposium on
Software testing and analysis, ISSTA ’10, pages 241–252,
New York, NY, USA, 2010. ACM.

[5] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with slam. Commun. ACM,
54(7):68–76, July 2011.

[6] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001,
Workshop on Model Checking of Software, LNCS 2057,
pages 103–122, May 2001.

[7] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C.-H. Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications of
the ACM, 53(2):66–75, 2010.

[8] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar.
The software model checker blast: Applications to software
engineering. Int. J. Softw. Tools Technol. Transf.,
9(5):505–525, Oct. 2007.

[9] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball.
Two for the price of one: a model for parallel and
incremental computation. In Proceedings of the 2011 ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA ’11, pages
427–444, New York, NY, USA, 2011. ACM.

[10] C. Cifuentes and B. Scholz. Parfait: designing a scalable
bug checker. In SAW ’08: Proceedings of the 2008
workshop on Static analysis, pages 4–11, New York, NY,
USA, 2008. ACM.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. ACM, 1977.

[12] M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive
program verification in polynomial time. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, PLDI ’02, pages
57–68, New York, NY, USA, 2002.

[13] L. De Moura and N. Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th
international conference on Tools and algorithms for the
construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[15] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and
scalable path-sensitive analysis. In Proceedings of the 2008
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’08, pages 270–280, New
York, NY, USA, 2008. ACM.

[16] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation
- Volume 4, OSDI’00, pages 1–1, Berkeley, CA, USA, 2000.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation
- Volume 4, OSDI’00, pages 1–1, Berkeley, CA, USA, 2000.

[18] D. Engler, D. Chen, and A. Chou. Bugs as deviant
behavior: A general approach to inferring errors in systems
code. In Symposium on Operating Systems Principles,
pages 57–72, 2001.

[19] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and
D. Vitek. Buffer overrun detection using linear
programming and static analysis. In Proceedings of the 10th
ACM conference on Computer and communications
security, pages 345–354. ACM, 2003.

[20] P. Godefroid. Compositional dynamic test generation. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’07, pages 47–54, New York, NY, USA, 2007. ACM.

[21] P. Godefroid, N. Klarslund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, pages 213–223, Chicago, Il,
2005.

[22] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. An
enabling framework for master-worker applications on the
computational grid. In Proceedings of the 9th IEEE
International Symposium on High Performance Distributed
Computing, HPDC ’00, Washington, DC, USA, 2000.

[23] S. Guarnieri and B. Livshits. Gulfstream: staged static
analysis for streaming javascript applications. In
Proceedings of the 2010 USENIX conference on Web
application development, WebApps’10, Berkeley, CA, USA,
2010. USENIX Association.

[24] G. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[25] M.-A. Jashki, R. Zafarani, and E. Bagheri. Towards a more
efficient static software change impact analysis method. In
Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE ’08, pages 84–90, New York, NY,
USA, 2008. ACM.

[26] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler.
From uncertainty to belief: Inferring the specification
within. In Seventh USENIX Symposium on Operating

563

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Systems Design and Implementation (OSDI), 2006.

[27] J. Lenstra and A. Kan. Complexity of scheduling under
precedence constraints. Operations Research, 26(1):22–35,
1978.

[28] F. Logozzo and T. Ball. Modular and verified automatic
program repair. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’12, pages 133–146,
New York, NY, USA, 2012. ACM.

[29] N. Lopes and A. Rybalchenko. Distributed and predictable
software model checking. In Verification, Model Checking,
and Abstract Interpretation, pages 340–355. Springer, 2011.

[30] I. Matosevic and T. S. Abdelrahman. Efficient bottom-up
heap analysis for symbolic path-based data access
summaries. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, CGO
’12, pages 252–263, New York, NY, USA, 2012.

[31] M. Mendez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In Proceedings of the
ACM international conference on Object oriented
programming systems languages and applications,
OOPSLA ’10, pages 428–443, New York, NY, USA, 2010.

[32] N. Nagappan and T. Ball. Static analysis tools as early
indicators of pre-release defect density. In Proceedings of
the 27th international conference on Software engineering,
ICSE ’05, pages 580–586, New York, NY, USA, 2005. ACM.

[33] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for java. In Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming
systems and applications companion, OOPSLA ’07, pages
815–816, New York, NY, USA, 2007.

[34] T. Prabhu, S. Ramalingam, M. Might, and M. Hall.
Eigencfa: accelerating flow analysis with gpus. In

Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’11, pages 511–522, New York, NY, USA, 2011. ACM.

[35] M. Pradel and T. Gross. Fully automatic and precise
detection of thread safety violations. In Proceedings of the
33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 521–530.
ACM, 2012.

[36] M. Ramanathan, A. Grama, and S. Jagannathan. Static
specification inference using predicate mining. In
Conference on Programming Language Design and
Implementation: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation, pages 123–134, 2007.

[37] Whitepaper: Coverity scan: 2012 open source report.
http://scan.coverity.com, May 2013.

[38] http://samate.nist.gov/.
[39] B. Sun, G. Shu, A. Podgurski, and B. Robinson. Extending

static analysis by mining project-specific rules. In
Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 1054–1063,
Piscataway, NJ, USA, 2012.

[40] Y. Xie and A. Aiken. Saturn: A scalable framework for
error detection using boolean satisfiability. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 29(3):16, 2007.

[41] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple:
a coverage-driven testing tool for multithreaded programs.
In Proceedings of the ACM international conference on
Object oriented programming systems languages and
applications, OOPSLA ’12, pages 485–502, New York, NY,
USA, 2012. ACM.

564

